Public-Key Identification Schemes based on Multivariate Polynomials

Koichi Sakumoto

Workshop on Solving Multivariate Polynomial Systems and Related Topics

@ ISIT. Fukuoka

Outline

• What is MPKC?

Another approach of MPKC

What is MPKC? (1/2)

- Multivariate Public-Key Cryptosystem
 - Public-key schemes using multivariate polynomials

$$f_1(x_1, \dots, x_{10}) = x_1 x_2 + x_1 x_4 + x_1 x_7 + x_2 x_3 + x_2 x_5 + x_3 x_7 + x_4 x_5 + x_1 + x_4$$

$$f_2(x_1, \dots, x_{10}) = x_1 x_3 + x_1 x_8 + x_1 x_{10} + x_2 x_4 + x_4 x_8 + x_5 x_7 + x_6 x_8 + x_2 + x_7$$

$$f_3(x_1, \dots, x_{10}) = x_1 x_5 + x_1 x_9 + x_2 x_5 + x_2 x_{10} + x_3 x_5 + x_7 x_9 + x_1 + x_4 + x_5$$

$$f_4(x_1, \dots, x_{10}) = x_1 x_6 + x_2 x_3 + x_3 x_8 + x_3 x_{10} + x_4 x_6 + x_4 x_9 + x_5 x_7 + x_2 + x_6$$

$$f_5(x_1, \dots, x_{10}) = x_1 x_8 + x_2 x_6 + x_3 x_6 + x_4 x_{10} + x_5 x_9 + x_7 x_8 + x_8 x_9 + x_6 + x_9$$

$$f_6(x_1, \dots, x_{10}) = x_1 x_3 + x_2 x_{10} + x_3 x_5 + x_3 x_9 + x_4 x_7 + x_6 x_7 + x_6 x_{10} + x_3 + x_8$$

$$f_7(x_1, \dots, x_{10}) = x_1 x_{10} + x_2 x_8 + x_2 x_9 + x_3 x_4 + x_5 x_6 + x_5 x_8 + x_7 x_{10} + x_7 + x_9$$

$$f_8(x_1, \dots, x_{10}) = x_2 x_3 + x_2 x_4 + x_2 x_7 + x_3 x_6 + x_5 x_9 + x_8 x_{10} + x_1 + x_4 + x_{10}$$

- Example
 - Public-Key Encryption
 - · Digital Signature
 - Public-Key Identification
- Other Multivariate Cryptosystems
 - · Stream Cipher (C. Berbain, H. Gilbert, J. Patarin, 2006)
 - Hash function (J. Ding, B. Yang, 2007)

What is MPKC? (2/2)

- Strong point
 - Possible to be very efficiently implemented
 - FPGA
 - A. Bogdanov, T. Eisenbarth, A. Rupp, C. Wolf, 2008
 - · SW
 - C. Berbain, O. Billet, H. Gilbert, 2006
 - A. I. Chen, M. Chen, T. Chen, C. Cheng, J. Ding, E. L. Kuo, F. Y. Lee, and B. Yang, 2009
 - Short Signature
 - Originally, this was the strong point of HFE, when it was proposed
 - Post-quantum
 - · Shor's algorithm, 1994

- Controversial point
 - How to assure security

How to assure security

- Checking that your scheme is secure against all known attacks
 - AES-128/192/256
 - SHA-256/384/512
 - Almost all MPKC

- Proving that security of your scheme is reducible to some reasonable assumption
 - RSA-PSS

- Factoring (or RSA assumption)
- Schnorr signature
 Discrete Log

- ???

Multivariate Problem

Simple Observation

RSA-PSS

pk: N = pq

sk: p, q 🚺

Schnorr signature

 $pk : Y = g^x$

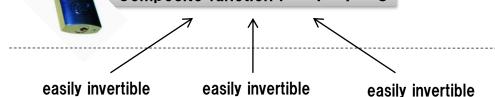
sk: x

Standard approach of MPKC

 $pk : P = T \circ F \circ S$

sk: T, F, S

Composite function $P = T \circ F \circ S$



map F

$$\Sigma_i s_{1i} x_i = z$$

map S

$$\sum_{i} s_{1i} x_{i} = z_{1} \sum_{ij} \alpha_{1ij} z_{i} z_{j} + \sum_{i} \beta_{1i} z_{i} = w_{1} \sum_{i} t_{1i} w_{i} = y_{1}$$

$$\Sigma_i t_{1i} w_i = y_1$$

map T

$$_{i}$$
 S_{mi} X_{i} = Z_{m}

$$\Sigma_i s_{mi} x_i = z_m \sum_{ij} \alpha_{mij} z_i z_j + \sum_i \beta_{mi} z_i = w_m \sum_i t_{mi} w_i = y_m$$

Simple Observation

RSA-PSS

$$pk: N = pq$$

Schnorr signature

$$pk : Y = g^x$$

Standard approach of MPKC

$$pk: P = T \circ F \circ S$$

Another approach of MPKC

$$: y = F(x)$$

$$F(x) = \begin{bmatrix} \Sigma_{ij} a_{1ij} x_i x_j + \Sigma_i b_{1i} x_i \\ \vdots \\ \Sigma_{ij} a_{mij} x_i x_j + \Sigma_i b_{mi} x_i \end{bmatrix}$$

About the new approach

began in 2011

- There is still only a small number of studies
 - Standard Identification/Signature
 - Quadratic problem [S., Shirai, Hiwatari, 2011]
 - · Cubic problem [S., 2012]
 - Any degree [V. Nachef, J. Patarin, E. Volte, 2012]
 - Threshold ring signature
 - Quadratic problem [A. Petzoldt, S. Bulygin, J. Buchmann, 2012]
 - Public-Key encryption
 - LWE-like new-type MQ assumption [Y. Huang, F. Liu, B. Yang, 2012]

About the new approach

began in 2011

- There is still only a small number of studies
 - Standard Identification/Signature
 - Quadratic problem [S., Shirai, Hiwatari, 2011]
 - · Cubic problem [S., 2012]
 - Any degree [V. Nachef, J. Patarin, E. Volte, 2012]
 - Threshold ring signature
 - Quadratic problem [A. Petzoldt, S. Bulygin, J. Buchmann, 2012]
 - Public-Key encryption
 - LWE-like new-type MQ assumption [Y. Huang, F. Liu, B. Yang, 2012]

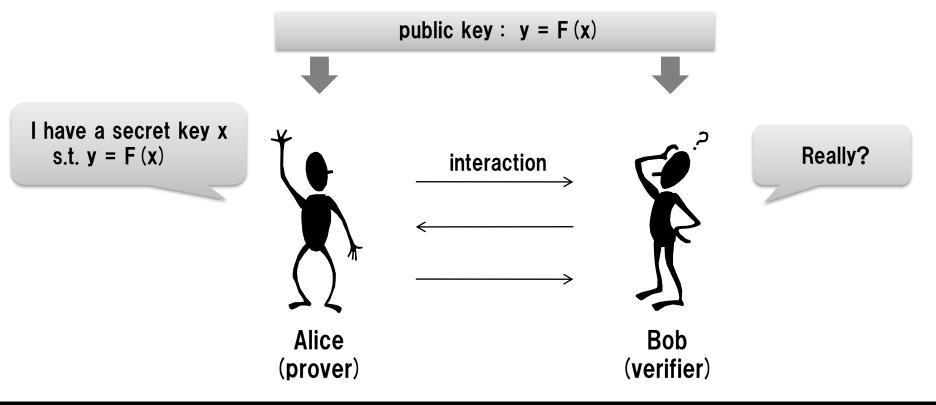
Outline

What is MPKC?

Another approach of MPKC

Model

- Alice (Prover)
 - asserts that she has a solution of the MQ problem
- Bob (Verifier)
 - checks whether the assertion is true or not through interaction with Alice



Wrong Solution

Do you really have a secret key x s.t. y = F(x)?

question

answer

Of course!
I'm sending you my secret key x

Cut and Choose (Intuition)

1. Cut

Question A

+

Question B

- 2. Ask only one out of the two questions
- 3. Answer to the chosen one

Do you really have a secret key x s.t. y = F(x)?

Question A?

Answer to Question A

Cut and Choose (Intuition)

- 1. Cut
- **Question A**
- +

Question B

- 2. Ask only one out of the two questions
- 3. Answer to the chosen one

Do you really have a secret key x s.t. y = F(x)?

Question B?

Answer to Question B

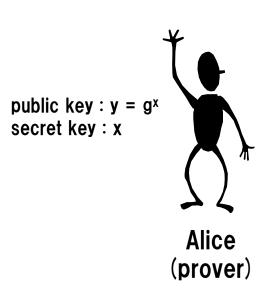
Cut and Choose (DL)

Question A:

Do you have X_A satisfying $r = g^{X_A}$?

Question B:

Do you have X_B satisfying $y = rg^{X_B}$?



I'm using a random number r

commit

Do you really have a secret key x

s.t. $y = g^x$?

question

answer

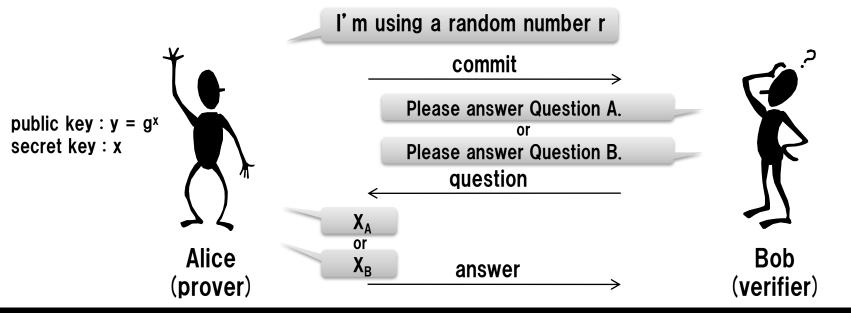
Bob (verifier)

Cut and Choose (DL)

Question A:

Do you have X_A satisfying $r = g^{X_A}$?

Question B: Do you have X_B satisfying $y = rg^{X_B}$?



Cut and Choose (DL)

Question A:

Do you have X_A satisfying $r = g^{X_A}$?

Question B:

Do you have X_B satisfying $y = rg^{X_B}$?

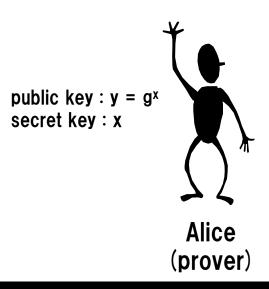
If a prover has both correct answers X_A and X_B

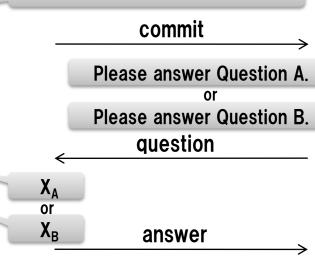
Then she has a secret key $x = X_A + X_B$ s.t. $y = g^{X_A + X_B} = g^X$

contraposition

If a prover doesn't have a secret key x s.t. $y = g^{X}$ Then she has only one out of X_{A} and X_{B}

Attacker can correctly answer only at most 1/2





Key point (Discrete Log)

DL problem

Given: y and g

Find: x

s.t.

$$y = g^x$$

Another form

Given: y and g Find: r, x_A, x_B

$$r = g^{x_A}$$

 $y = rg^{x_B}$

Key point (Multivariate Quadratic)

Multivariate Quadratic function F_{MO}

$$F_{MQ}(x) = \begin{bmatrix} \Sigma_{ij} a_{1ij} x_i x_j + \Sigma_i b_{1i} x_i \\ \vdots \\ \Sigma_{ij} a_{mij} x_i x_j + \Sigma_i b_{mi} x_i \end{bmatrix}$$

$$G_{MO}(x, y) = F_{MO}(x+y) - F_{MO}(x) - F_{MO}(y)$$

 $G_{MQ}(x, y)$ is linear in x

MQ problem

Given: y and F_{MQ}

Find: x

s.t.

$$y = F_{MO}(x)$$

Another form

Given: y and F_{MQ}

Find: r_0 , r_1 , t_0 , t_1 , e_0 , e_1

$$G_{MQ}(t_0, r_1) + e_0 = y - F_{MQ}(r_1) - G_{MQ}(t_1, r_1) - e_1$$

 $t_0 = r_0 - t_1$
 $e_0 = F_{MQ}(r_0) - e_1$

Key point (Multivariate Cubic)

Multivariate Cubic function F_{MC}

$$F_{MC}\left(x\right) = \begin{bmatrix} \boldsymbol{\Sigma}_{ijk} \, \boldsymbol{a}_{1ijk} \, \boldsymbol{x}_{i} \boldsymbol{x}_{j} \boldsymbol{x}_{k} + \, \boldsymbol{\Sigma}_{ij} \, \boldsymbol{b}_{1ij} \, \boldsymbol{x}_{i} \boldsymbol{x}_{j} + \, \boldsymbol{\Sigma}_{i} \, \boldsymbol{c}_{1i} \, \boldsymbol{x}_{i} \\ \vdots \\ \boldsymbol{\Sigma}_{ijk} \, \boldsymbol{a}_{mijk} \, \boldsymbol{x}_{i} \boldsymbol{x}_{j} \boldsymbol{x}_{k} + \, \boldsymbol{\Sigma}_{ij} \, \boldsymbol{b}_{mij} \, \boldsymbol{x}_{i} \boldsymbol{x}_{j} + \, \boldsymbol{\Sigma}_{i} \, \boldsymbol{c}_{mi} \, \boldsymbol{x}_{i} \end{bmatrix}$$

$$G_{MC}(x, y) + G_{MC}(y, x) = F_{MC}(x+y) - F_{MC}(x) - F_{MC}(y)$$

 $G_{MC}(x, y)$ is linear in x

MC problem

Given: y and F_{MC}

Find: x

s.t.

$$y = F_{MC}(x)$$

Another form

Given: y and F_{MC}

Find: r_0 , r_1 , t_0 , t_1 , t_0 , e_0 , e_1

$$\begin{aligned} G_{MC}\left(u,\,r_{1}\right)+\,e_{1} &=\,y\,-\,F_{MC}\left(r_{1}\right)-\,G_{MC}\left(t_{0},\,r_{1}\right)-\,e_{0}\\ G_{MC}\left(u,\,r_{0}\right)-\,e_{0} &=\,e_{1}\,-\,F_{MC}\left(r_{0}\right)-\,G_{MC}\left(t_{1},\,r_{0}\right)\\ t_{0} &=\,r_{0}\,-\,u\\ t_{1} &=\,r_{1}\,-\,u \end{aligned}$$

Key point (Multivariate Cubic)

[V. Nachef, J. Patarin, E. Volte, 2012]

Multivariate Cubic function F_{MC}

$$F_{MC}(x) = \begin{bmatrix} \Sigma_{ijk} \, a_{1ijk} \, x_i x_j x_k + \sum_{ij} b_{1ij} \, x_i x_j + \sum_{i} c_{1i} \, x_i \\ \vdots \\ \Sigma_{ijk} \, a_{mijk} \, x_i x_j x_k + \sum_{ij} b_{mij} \, x_i x_j + \sum_{i} c_{mi} \, x_i \end{bmatrix}$$

 $G_{MC}(x, y, z)$ is linear in x

$$G_{MC}(x, y, z) = F_{MC}(x+y+z) - F_{MC}(x+y) - F_{MC}(x+z) - F_{MC}(y+z) + F_{MC}(x) + F_{MC}(y) + F_{MC}(z)$$

MC problem

Given: y and F_{MC}

Find: x s.t.

$$y = F_{MC}(x)$$

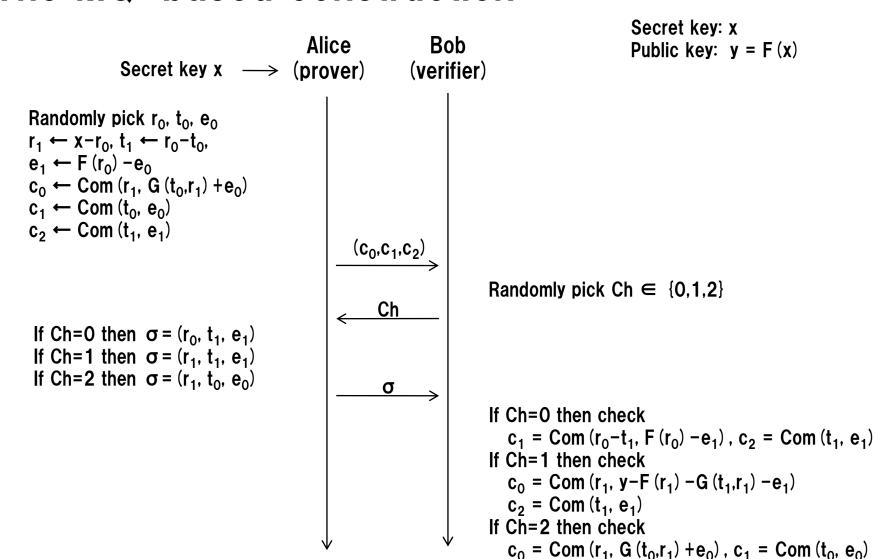
Another form

Given: y and F_{MC}

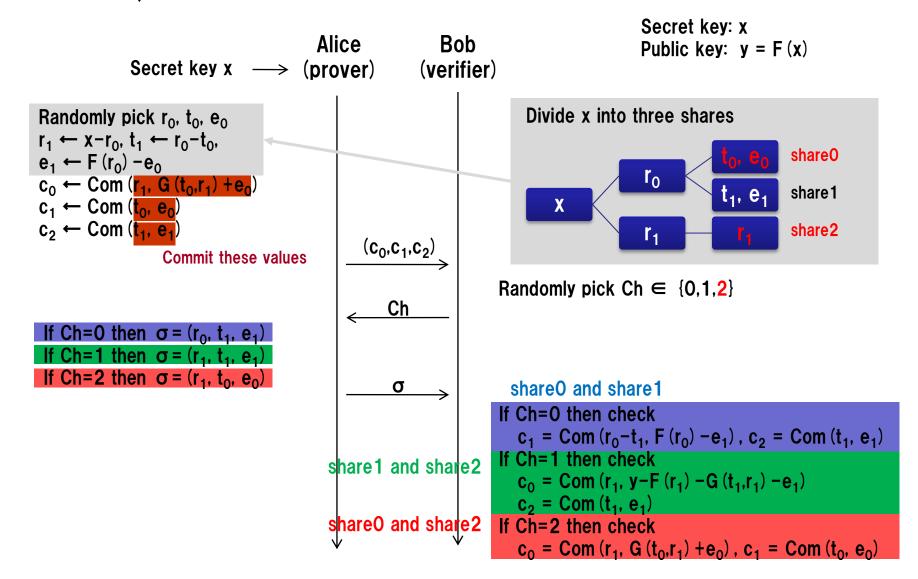
Find: r₀, r₁, r₂, t₀, t₁, e₀, e₁, f₀, f₁, h₀, h₁

$$\begin{aligned} y &= G_{MC}\left(t_{1},\, r_{1},\, r_{2}\right) - f_{1} - h_{1} + e_{1} - \,F_{MC}\left(r_{1} + r_{2}\right) - \,F_{MC}\left(r_{1}\right) - \,F_{MC}\left(r_{2}\right) \\ &= G_{MC}\left(t_{0},\, r_{1},\, r_{2}\right) + f_{0} + h_{0} - e_{0} \\ &\qquad \qquad \qquad t_{0} = r_{0} - t_{1} \\ &\qquad \qquad F_{MC}\left(r_{0}\right) - \,e_{1} = e_{0} \\ &\qquad \qquad f_{0} = F_{MC}\left(r_{0} + r_{1}\right) \, - \, \,f_{1} \\ &\qquad \qquad h_{0} = F_{MC}\left(r_{0} + r_{2}\right) \, - \, h_{1} \end{aligned}$$

The MQ-based construction

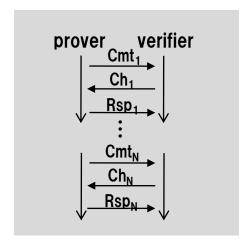


The MQ-based construction

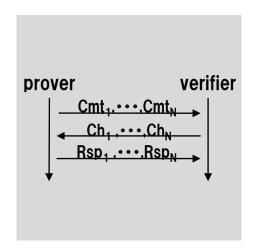


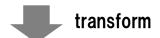
Public-key identification schemes

Sequential Composition



Parallel Composition





Signature scheme

Comparison

	MI/HFE/UOV-type approach	Cut-and-Choose type approach
Speed	Very high	_
Security	Heuristic	Reduction
Post Quantum	0	0
Signature Size	Small	Large
Key size	Large	Small